On sum sets of sets having small product set

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-sum free sets with small sum-set

Let A be a zero-sum free subset of Zn with |A| = k. We compute for k ≤ 7 the least possible size of the set of all subset-sums of A.

متن کامل

Quantitative Sum Product Estimates on Different Sets

Let Fp be a finite field of p elements with p prime. In this paper we show that for A,B ⊂ Fp with |B| ≤ |A| < p 1 2 then

متن کامل

Small Maximal Sum-Free Sets

Let G be a group and S a non-empty subset of G. If ab / ∈ S for any a, b ∈ S, then S is called sum-free. We show that if S is maximal by inclusion and no proper subset generates 〈S〉 then |S| ≤ 2. We determine all groups with a maximal (by inclusion) sum-free set of size at most 2 and all of size 3 where there exists a ∈ S such that a / ∈ 〈S \ {a}〉.

متن کامل

Sum and product of different sets

Let A and B be two finite sets of numbers. The sum set and the product set of A,B are A+B : = {a+b : a ∈ A, b ∈ B}, and AB : = {ab : a ∈ A, b ∈ B}. We prove that A + B is as large as possible when AA is not too big. Similarly, AB is large when A + A is not too big. The methods rely on the λp constant of A, bound on the number of factorizations in a generalized progression containing A, and the ...

متن کامل

On permutation sum sets

A permutation sum (resp. difference) set on a group G is a set F of bijections from G to G such that fg (resp. f−1g) is again a bijection for all f, g ∈ F (resp. f, g ∈ F with f 6= g ∈ S), where (fg)(x) := f(x)g(x) for all x ∈ G, etc. The maximum size d(G) of a permutation difference set has been well studied, with many connections drawn between such sets and combinatorial objects such as famil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Steklov Institute of Mathematics

سال: 2015

ISSN: 0081-5438,1531-8605

DOI: 10.1134/s0081543815060255